Search results for " quantum transport"
showing 5 items of 5 documents
Unveiling signatures of topological phases in open kitaev chains and ladders
2019
In this work, the general problem of the characterization of the topological phase of an open quantum system is addressed. In particular, we study the topological properties of Kitaev chains and ladders under the perturbing effect of a current flux injected into the system using an external normal lead and derived from it via a superconducting electrode. After discussing the topological phase diagram of the isolated systems, using a scattering technique within the Bogoliubov de Gennes formulation, we analyze the differential conductance properties of these topological devices as a function of all relevant model parameters. The relevant problem of implementing local spectroscopic measurement…
Quantum Transport and Current Distribution at Radio Frequency in Multiwall Carbon Nanotubes
2012
Multiwall carbon nanotubes represent a low-dimensional material that could serve as building blocks for future carbon-based nanoelectronics. The understanding of the electromagnetic performances at radio frequency of these materials for use in nanointerconnects is strictly related to the analysis of their transport properties as function of the working conditions. In this paper, we present an explicit expression of the conducting channels as function of diameter, temperature, doping, and supply voltage for both metallic and semiconducting carbon nanotubes. The proposed formula is based on the Dirac cone approximation of the conducting band energy of graphene nearby the Fermi points, combine…
Photon localization versus population trapping in a coupled-cavity array
2014
We consider a coupled-cavity array (CCA), where one cavity interacts with a two-level atom under the rotating-wave approximation. We investigate the excitation transport dynamics across the array, which arises in the atom's emission process into the CCA vacuum. Due to the known formation of atom-photon bound states, partial field localization and atomic population trapping in general take place. We study the functional dependance on the coupling strength of these two phenomena and show that the threshold values beyond which they become significant are different. As the coupling strength grows from zero, field localization is exhibited first.
Quantum dissipative dynamics of a bistable system in the sub-Ohmic to super-Ohmic regime
2016
We investigate the quantum dynamics of a multilevel bistable system coupled to a bosonic heat bath beyond the perturbative regime. We consider different spectral densities of the bath, in the transition from sub-Ohmic to super-Ohmic dissipation, and different cutoff frequencies. The study is carried out by using the real-time path integral approach of the Feynman-Vernon influence functional. We find that, in the crossover dynamical regime characterized by damped \emph{intrawell} oscillations and incoherent tunneling, the short time behavior and the time scales of the relaxation starting from a nonequilibrium initial condition depend nontrivially on the spectral properties of the heat bath.
Haldane Model at finite temperature
2019
We consider the Haldane model, a 2D topological insulator whose phase is defined by the Chern number. We study its phases as temperature varies by means of the Uhlmann number, a finite temperature generalization of the Chern number. Because of the relation between the Uhlmann number and the dynamical transverse conductivity of the system, we evaluate also the conductivity of the model. This analysis does not show any sign of a phase transition induced by the temperature, nonetheless it gives a better understanding of the fate of the topological phase with the increase of the temperature, and it provides another example of the usefulness of the Uhlmann number as a novel tool to study topolog…